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We consider some time-reversible cellular automata on the d-dimensional 
integral lattice Z a and study their time evolution properties. We show first that 
a Boltzmann-type entropy can be defined which is not less than its initial value 
for initial states which have no spatial correlation. For monotonic increase of 
the entropies for such initial states we need an additional condition which we 
call renewality. Under the renewality condition entropy is monotonic non- 
decreasing. We give some examples of cellular automata which satisfy the 
renewality condition. 
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1. I N T R O D U C T I O N  

Among the fundamental problems of statistical mechanics one of the 
utmost interest is the justification of the second law of thermodynamics, or 
the explanation of the apparent conflict between microscopic dynamical 
reversibility and macroscopic irreversibility, t3' 4, 6, 9, ~0, ~) 

For the isolated finite dynamical system it is impossible, as is well 
known, to define rigorously a nonequilibrium entropy as a dynamical 
variable if we require that a law of increasing entropy should be strictly 
realized. But these circumstances do not deny the possibility to be able to 
prove the increasing law of the entropy rigorously, if we consider the 
systems of infinitely many degrees of freedom and restrict the initial states. 
Note that it is very natural to consider the infinite systems, since the 
second law of thermodynamics itself has statistical nature, and so the size 
of the number of particles should be taken into account, t2'4'5'6'9' ~1) 
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In the papers t9'~~ we considered a one dimensional hard-points 
infinite system on Z whose particles have several colors and velocities with 
unit magnitude. We showed there the system has many interesting time 
evolution properties, especially we showed that Boltzmann type entropies 
increase monotonically for the initial states which have no spatial correla- 
tion. 

In this paper we expand these results to more general systems. Namely, 
we consider some time reversible cellular automata on the d-dimensional 
integral lattice Z d and study their time evolution properties. We show 
firstly that Boltzmann type entropies of the systems do not decrease for the 
initial nonequilibrium states which have no spatial correlation. This result 
which holds for rather general systems does not mean that the entropies 
increase monotonically. As is known, ta'~t) monotonical increase of the 
entropy and the reversibility of the system "contradict" each other. There- 
fore more important and difficult question is that under what type of inter- 
action and for what type of initial (nonequilibrium) states their entropies 
of the reversible system increase monotonically. 

We will show that one of the natural candidates of such interactions 
is the one which we call renewality. 

It is known that if the system is mixing then the "Boltzmann" entropy 
can increase asymptotically for nonequilibrium states, t ~  However our 
assertion of entropy increase is not merely asymptotic but monotonic. Our 
systems are time reversible, so monotonical increase of entropy for all the 
initial nonequilibrium states is impossible, even if the systems are of infinite 
degrees of freedom, t4̀  ~) Therefore it is necessary to restrict the initial states 
to have the monotonic increase of entropy. We believe our locally equi- 
librium states, namely states with no spatial correlations are such a natural 
class. 

In Section 2, we describe the class of systems and the definitions of 
their entropies. In Section 3, we consider general reversible systems not 
necessary with renewality, state some results and prove them. In Section 4 
and 5 we give our main results, Theorems 4 and 5, namely we define 
cellular automata of renewal type for which the entropies increase 
monotonically for the initial conditions without spatial correlation and 
construct concretely some cellular automata of renewal type. 

2. DESCRIPTION OF D Y N A M I C S  OF CELLULAR A U T O M A T O N  
AND THE DEFINITIONS OF ITS ENTROPIES 

In this section we define a dynamics of cellular automaton and its 
entropies. 
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Let S and Y be finite sets, and Z d be the d-dimensional integral lattice. 
The configuration space g2 of our cellular automaton (CA) is the product 
space of S over y x Z d :  

O'=SrXZ~= I - I  Sy,~, Sy,~.=s for V ( y , z ) e  Y x Z  a (1) 
(y, z) e Yx Z d 

We call Y momentum space and its elements momentum,  which represent 
"momentum" or "velocity" of the particles. Usually we take a subset of Z d 
as Y. We call S state space and its elements state, which represent the 
"state" or "colour" of the particles. Sy. .  is the state space over momentum- 
lattice site (y, z) e Y x Z d. 

A configuration co, an element of t'2 is written as follows: 

co= {co(y , z ) } (y , z )~rxz~ ,  c o ( y , z ) e S  (2) 

co(y, z) indicates the state or colour of the particle on the lattice site z e Z a 
with momentum y e Y. 

For  co e f2 we denote its restriction on a subset R c Z a by co R, that is, 

coR(y, z ) = c o ( y ,  z) V(y, z) e Y x R c  Y x Z  d 

The time evolution of our CA is given by a transition function, which 
defines the dynamical rule of the CA. The transition function fb is a function 
from Y x S r• `% to S, where Ro is a finite set of z d: 

fb " Y x S r• `% ~ S " ( y, co ̀% ) ~--~ # ( y, co ̀% ) (3) 

where 09.% e S r• `% We call R0 the range o f  interaction. 
The time evolution map T =  T ,  on 12 is defined as follows: for 

Vco= {co(y, z)} e a  

( Tco)( y, z) = # (  y, co`%+ z) (4) 

here R0 + z = { y + z; y e R0}. 
The map T is called reversible when it is a bijection of I2, that is, a one 

to one mapping of t2 onto itself, and the inverse mapping T-~ is also given 
by some transition function, q~-i.  y x S r• `% ~ S, with the same range of 
interaction. 

The macrostate space ~ht of the CA,(I2, # )  or (t2, T) consists of all 
Borel probability measures /t on f2. T induces a map of ~g, which we 
denote also by T, defined by 

(Ta ) (A)  : = , a (T -~A)  (,ae./ /[ ,A c O )  (5) 
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We denote the distribution of the densities on Sy,= with respect to 
/t ~ Jr by py.=(lz) or Pc,=('; la), that is, 

py.=(S;la) :=/t{og; co(y,z)=s} (s~Sy,~). (6) 

Let .17 be the subset of ~r162 which consists of probabilities with no spa- 
tial correlations, that is, direct product probabilities on each momentum- 
lattice site: 

.//7"= {p ~ Jr p = .  I I  lty.z t (7) 
(y,  z) + Yx Z a 

where/~y,: is a probability measure on Sy.=((y, z )e  Yx zd). 
An element of .//7 will be called a locally equilibrium macrostate on I2, 

and ~ will be called a locally equilibrium macrostate space. 
We can define the natural projection zr from ~r162 to ~1r as follows: 
F o r / t  e r n(/t)e J7  is a direct product probability measure lr(p)= 

1-Ity.=)~ r• where py.~ is the probability on Sy:  defined by 

fly, z(S) "-- Py, z(S; fl) for Vs e S 

Note that 

py. =( �9 ~:,u) = py...( �9 ,u) for V p e ~ '  

Now let us define the Boltzmann-type entropy H(p) of p ~ ~ by 

- 1  
H(/t) "= lim sup E E Py, z(s;/~) log py, z($'~ f l )  

N---~ oO IAN[ (y,'-)+Au :+S 
(8) 

where A N ' = { ( y , z ) = ( y ,  z l ,Zz , . . . ,Za)~yxza;  [zil~N, i = l ,  2,...,d}, 
IANI : = ( 2 N +  1)a IYI, IYI is the number of the elements ofY. ~2) 

Secondly we define an auxiliary KS (Kolmogorov-Sinai)-type entropy 
h(/~) of/~ ~ J/g by 

- 1  
h(/z ) ' =  lim sup y' /~(A ) log p( A ) 

N-...ct:~ [AN[ A+~Au) 

Here Cg(AN) is the partition of I2 defined by the states on AN : (1)  

x -A~; o~(A~) zS"~} ~(AN) "= {A---og(AN)xS r z u 

(9) 

Note that our KS-type entropy h(/~) is different from the entropy 
which appears in the second law of thermodynamics. We believe our 
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Boltzmann type entropy H(/~) relates directly to it. It may be better to call 
h(/t) the "information" of the macrostate/~ which represents the complexity 
of the structure of/~. 

Note also that the measure /~ does not need to be translationally 
invariant. The entropies H(/t), hot) are defined by supremum limit, so they 
exist always for every/~ ~ J / .  Note that 

H(/~), h(/t) ~< log I SI 

for I Sl, the number of the elements of the set S. 

3. L A W  OF E N T R O P Y  I N C R E A S E  

Now in general let Pk be a probabili ty measure on a finite set Sk, 
(k = 1, ..., K). Let ~a'(/~t, ..., PK) be the set of probability measures/2 on the 
product set S~ x .. .  x S r  such that/2zc~ -~ = P k ,  where ~zk is the natural  pro- 
jection from the product set S~ x . . .  x SK onto Sk(k = 1 .... , K). Note  that 
the direct product probability of / t  ~, ...,/~K, p I X ...  X/tK ~ Jr ~ .... , PK). 

In general we define the entropy e(/2) of a probability measure/2 on a 
finite set S in the usual way by 

e(/2) "= -- ~. /2(~) log/2(~) ( 1 O) 
g ~ S  

The following Lemma 1 ("the maximal entropy principle") is well 
known and can be easily proven from the definition of the entropy e(/i) by 
using Jensen's inequality. 

Lemma 1. For V f i  (~ d / / / ( f l  1 . . . .  , PK), we have 

~(~) ~< ~(,u, x . . .  x ~ )  = ~(,u,) + . . .  + e(~) (11) 

The equality holds iff/2 =/z~ x . . .  x/ t  K- 

F rom the inequality of the Lemma 1 we obtain easily the following 

P r o p o s i t i o n  1. For  Vp ~Jg ,  we have 

h( rq.t ) >~ h(# ) (12) 

w 

The equality holds if p ~ Jg. 

As a corollary of the equality of the Lemma 1 we obtain following 
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Proposition 2. For Vg e Jr we have 

H(a) = h(~ra) (13) 

Proof. Let gy.z be the probability measure on Sy,~ defined by 
gy.z(s) = py. z(S; nit). Then by the equality of the Lemma 1, 

zc/t(A ) log n/t(A ) 
A ~ ~(AN) 

( Y , z ) E A  N 

(Y, z)r N 

- E 
(Y,z)r N 

E 
(Y,z)r N 

(~s , ,  : py.~(s; felt)log py. :(s; zq~)) 

(~ ~s~,. ~ py' ,(s;/ ,)  log py. =(s;/,)) 

Hence we have h(zr/,) = H(/,). 1 

Now let us consider our dynamical system (O, T). 

Theorem 1. KS-type entropy h(/,) does not increase for V/z e J[: 

h( Tlt ) <~ h(lu ) (14) 

In addition, if T be reversible, then the KS-type entropy h(/t) does not 
change in time for Va e Jl" 

h(Ta)=h(a) (15) 

Proof. As the range of the interaction Ro is a finite set, so there exists 
No such that Y x Ro c A No. From the assumption it is easy to see that 
for VN> No the states of Tco on (y, z )~  AN, Tco(y, z) are determined by 
the states co(y', z') on (y', z') e AN+ No" Conversely if T is reversible the 
states co on (Y,z)~AN--No are determined from the states Tco(y',z') on 
(y', z') ~ AN. Hence 

C~(AN+ N o) >" T - I c~ (AN)  ~- C~(AN_No ) 

(When T is not reversible we get only the first inequality.) 
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Here d > - ~  ( d ,  ~ are partitions of/2) means that d is a refinement 
of ~ ,  that is, for VA e d there exists a B e ~ such that A c B. 

It is well known that if ~r >-~' then 

- ~ p(A)logp(A)i> - ~ p(B)logp(B) 
A E . ~ d  B E ~ 

Therefore 

/~(A ) log p(A ) 
A E e l ( A N + N o  ) 

>I - ~ Ia(B) log/l(B)f> -- 
B e  T -  Ir~(AN) C E  ~ ( A N _ N o )  

/t(C) log/z(C) 

Hence from the first inequality we have 

- 1  
h(p) = lim sup [AN Nol 

N .-.~ oo + A E ~ ( A N + NO ) 

/~(A ) log/~(A ) 

- 1  
i> lim sup 

N - - ,  ~ IA NI B' E~'6'(AN) 

/a( T - tB ' )  log p ( T - ' B ' )  

=limsup - 1  ( IANI 
(TIt)(B') log(Tlu)(B') IAN+N01 

=h(Tz) 

Note that limN_, oo IA NI/IA N + N0l = 1. 
Similarly we get from the second inequality 

h(T~) I> h(~) I 

Theorem 1 tells us that when T is reversible T does not lose the "infor- 
mation" of the state p ~ J [ .  But when T is not reversible, i.e., not one to 
one, then it may lose the "information". As for the H(,u) we have following 

T h e o r e m  2 ("Weak law of entropy increase"). 

Assume that T is reversible, then the Boltzmann type entropy of any 
t 

locally equilibrium macrostate p ~ ~ '  does not decrease from the initial one 
in the sense that: 

H ( T " p ) ~ H ( I ~ )  for V n e Z  (16) 
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Proof. From Proposition 1, 2 and Theorem 1 

H( T"lu) ~ h( T"~a) = h(la) 
m 

As/a ~ dg we have zr/~ = p, so that 

h ( a  ) = h( ) = ) 

This proves the theorem. I 

Theorem 2 only asserts the non-decrease of the entropy H(Tn/~) at 
time n ~ Z from the initial entropy H(p) for the locally equilibrium macro- 
state a ~ ~g- We cannot assert the same result for general/~ ~ ~/_ In fact, if 
we take as initial macrostate/a = T-"0/~o for some/to ~ ./g and no > 0, then 
the entropy of/~ can even decrease: H(T"op)<~ H(l~). [We can assert strict 
inequality holds. (See ref. [ 9 ] ) ] 

In order to get the monotonic increase of the entropy H(T"g) with 
respect to the time n >t 0, we have to restrict our class of dynamical rules 
or that of the transition functions �9 which define the dynamical rules. 

4. D Y N A M I C A L  RULES OF RENEWAL TYPE 

Let D(S) be the set of all probability distributions on the state 
space S: 

D(S)={p 'S - ,R;  ~ p(s)=l,p(s)~O for Vs~S). (17) 
s ~ S  

Def in i t i on .  /a e d// is called of renewal type with respect to the 
transition function #, if the density distribution py,~(.; T ' + l p )  on each 
momentum-lattice site (y, z)~ Yx Z d with respect to T "+ I/t is determined 
only by the densities {Py',2+r('; T"p)} on the momentum-lattice sites 
(y', z + r) ~ Yx (z + Ro) with respect to T"/a for all n >i 0, that is, if there 
exists a function 

$" Yx (D(S)r• ~ D(S): (y, {py,,~} (y',r)~ YxR O) 

{P, ' , ,} (,', 

such that 

Py, z( s', Tn+lf l)=q}( s, Y, {Py,, ~+r('; T"kt)} (y, ,)~ r x ~ )  

Vs ~ S, V(y, z) ~ Yx Z d, and Vn~>0 (18) 
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A transition function �9 of CA or CA itself is called of renewal type, if 
all/U ~ J4 are of renewal type with respect to the transition function ~. We 
call the function ff = ~ the renewal function of the transition function 
~,and the above equation (18) the renewal equation. 

Henceforth we will often omit the subscript (y ' , r )~  Y xRo for 
simplicity. 

Remark.  When a transition function �9 is of renewal type, then its 
renewal function ~b is determined uniquely from the transition function 
itself, namely 

~(', Y, {Py,.r} )=Py.o('; T/u) 
w 

where/U e ~g is,such a locally equilibrium state that 

Py' ,r( ' ;  /u) -- Py' ,r  for V(y', r) ~ Y x  Ro 

and o =(0,  ..., 0) ~ Z d. 
Note that for V{ py,,r E D(S)}, there exists such a p e J r  that 

Py',r( ";/U) --- Py' ,r  for V(y', r) e Yx Ro 

and Py, o('; Tp) is uniquely determined by {Py',r', (Y', r)~ YxRo}. In this 
sense we denote the renewal function of the transition function �9 of 
renewal type by ~ = ~a,. 

A trivial example of a transition function r of renewal type is "transla- 
tion," that is, when the map T defined by r is given by for some Zo ~ Z d 

(Tco)(y, z) =co(y, z + Zo) for V(y, z) e Yx Z d (19) 

We give some nontrivial examples of transition functions of renewal 
type in the next section. 

Theorem 3. Assume T be defined by a transition function ~ of 
renewal type, then we have for any locally equilibrium macrostate/z e J4' 

re( T( rc( T"p ) ) ) = re( T "+ 1/U ) for Vn>~0 (20) 

Proof. It is sufficient to prove that for V(y, z)~ Yx Z d, 

py,=(.; T"+'/~)=py,:(.; ~(=T"/~)) 
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From the assumption we have 

py.~(s; T"+'lZ)=d?*(s,  y, {py,.~+,(-; T"Iu)} ), Vs e S, 

where S a, is the renewal function of the r 
As lrT~/t e .///7 we have from the above remark 

Py, z( S, T(I~Tn/2)) =~@( s, Y, { Py',z+r(', zcT#/~)} ) 

= ~b~(s, y, {Py,,~+,('; T"p)}) 

Hence the conclusion follows. I 

As a corollary of the Theorem 3, we have following 

Theorem 4 ("Law of entropy increase"). Assume T to be reversible 
and defined by a transition function r of renewal type, then the Boltzmann 
type entropy of any locally equilibrium macrostate a eJr increases 
monotonically in the sense that: 

H( T" + tl.t ) >~ H( T"~ ) for Vn>~O (21) 

Proof. From Proposition 2, we get 

n (  T" + llz) = h(zcT" + ll2 ) 

As/t e ~ so by Theorem 3, we have 

h ( rc T "+ ll2 ) = h ( rc Trc T"iz ) 

Then by Proposition 1 

h ( zr T~ T"lt ) >i h( Tzr T"lu ) 

Finally by Theorem 1 and Proposition 2, we have 

h(TrcT"It) = h ( ~r T"a ) = H ( T ' l t )  

This proves the theorem. ! 

Important Remark: Theorem 4 claims only non-decrease of 
entropy for reversible T of renewal type, but we can construct a CA of 
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renewal type for which Boltzmann type entropies for some p ~ J/7 actually 
increase strictly: (9) 

H( T" + 'I~ ) > H( T"I ~ ) for Vn f> 0 

(See the remark at the end of Theorem 5.) 

5. E X A M P L E S  OF C E L L U L A R  A U T O M A T A  OF R E N E W A L  T Y P E  

Firstly we give a simple example of a transition function of renewal 
type. We will call the CA with such a transition function "ideal gas." 

The state space S and the momentum space Y are arbitrary finite sets. 
Let { ry ~ Z d; y ~ Y} be a function from Y to Z d. The transition function 
q~i.g, of our ideal gas is given by 

~i.g.(y, {co(y, r)} ):=co(y, ry) 

The range of interaction Ro is Ro := { ry ~ Z d, y ~ Y}. 
In other words time evolution map T of our ideal gas is given by 

( Tco ) ( y , z ) = c o ( y ,  z + r y ) for V(y, z) e Yx Z d (22) 

A physical interpretation could be that co(y, z )=  s means the particle 
on the site z ~ Z d with "velocity" ry is of colour s. Each particle of the "ideal 
gas" is translated independently. 

P r o p o s i t i o n  3. The transition function of ideal gas ~ g  is of 
renewal type, and its renewal function @~g is given by 

@"g'( ", Y, { Py,, ,} ) "= Py, r~ (23) 

Proof .  From the definition of the time evolution map, 

( T"co)( y, z) = co(y, z + nry) 

Therefore we get 

p~,=(.; T"~)=p~,=+,,,(.;~) 

Hence for Vn >i 0, we have 

p~,=(.; T"+'~)=p~,=+,~(.; T"~) 
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This means the renewal equation 

py,=(., Tn+'fl)-'~i'g'( ., y, {py,,~+~(.; T"/z)}) 

holds with renewal function, 

q~"g(., y, {Py',r} ) "=Py, ry 

Hence the conclusion follows, l 

Note that in the ideal gas case, the entropy H(T"/t) is time invariant 
for all/t E ~ ' :  

H ( T " g ) = H ( # )  for Vn~Z 

To have strict increase, H(T  n+ ~/z)> H(T"p) ,  we need to construct 
more complicated interaction. So we give another example of a transition 
function of renewal type which has an interaction of a "collision" type and 
gives strict increase of entropy. This is a slightly generalized system of the 
one which was considered in refs. [9, 10]. 

Let Y : = { - 1 , + I } c Z ,  S := {0,1, 2, ..., k} (k~>2), and Z d = Z  
(d=  1). 

The transition function r is defined by 

= ~ayco( - y ,  y )  
~(Y' co~)" Lco(Y, -Y)  

if co(y, - y ) .  co( - y ,  y) ~- 0 

if co(y, - y ) .  co(-y,  y) = 0 

where try ( y ~  Y) are permutations of S such that ay(O)=0. The range of 
interaction is R0 := { -  l, + 1 } c Z. We denote this transition function r 
by ~=~,.ol.  

In other words, the time evolution map T of our CA is given by 

f ayco( - y, z + y) 
Tco( y , z) 

Lco(y, z -  y) 

if co(y, z--  y).  co( --y, z + y) ~ 0 

if co(y, z--  y).co(--y,  z + y) = 0  
(24) 

Intuitively saying, co(y, z )=  s ( ~ 0 )  means there exists a particle of the 
colour s on the site z ~ Z with velocity y = _  1, while co(y, z ) = 0  means 
there exists no such particle. Particles behave like hard-points when 
try = identity for all y ~ Y. { try} denotes a kind of chemical reaction, which 
makes the change of colours of the particles after collision. 

Theorem 5. The above defined transition function ~col is of 
renewal type, and its renewal function ~cot is given by 
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~c~ S' Y' {Py',r} ) 

"= {py. __y(O) 
p_y.y(O) py. _y(s)+ ( 1 - p y .  _y(0))p_y.y(ay 's)  

if s = 0  
if s~-0 

L e m m a  2. For the above defined transition function ~co/, 

{ T "+ 'o9(y, z )=  0} = { T"co(y, z -  y)= o} = {co(y, z - ( n  + 1) y ) =  0} 

Vn >t 0 and V(y, z) e Yx Z 

and 

{ T "+ 'co(y, z )=s}  =({ T"co(-y,  z + y ) =  a)- '  s} 

n { co(y, z - ( n  + 1 ) y) q: 0} ) 

U ({ T"o~(y, z - y) = s} 

o { c o ( - y , z + ( n +  1)y) =0})  

Vs~0,  Vn>10 and V(y, z) e Yx Z 

where union U is the disjoint sum. 

Proof. The first part of the lemma is a direct consequence of the 
definition of the transition function ~,.ot. 

Now let s q:0, we devide the set of configurations { T "§ ~co(y, z) =s} 
according to whether the state T "+ ~o9(- y, z) on the momentum-lattice 
site ( - y ,  z) is 0 or not, namely, 

{T"+t~(y,z)=s} 

=({T"+'~o(y,z)=s} n {T"+~og(- y,z)~O} ) 

U ({ T"+ 'oXy, z) = s} ~ { T" + ',o( - y, ~) = 0} ) 

By the definition of the transition function �9 ~~ we have 

{T"+'co(y,z)=s}. ~ {T"+'co(- y,z)~O} 

= {T"co(-y ,z+ y) = a y ' S }  n {T"og(y ,z-y)r  

From the first part of the lemma 

{T"co(y,z- y)4:O} = {~o(y,z-(n+ 1) y) 4=0} 
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hence 

{ T"+ 'oo(y, z) =s} c~ { T"+ 'oJ(- y, z) #O} 

= { T"og(-y, z + y ) = a ~ ' s }  c~ {co(y, z - ( n  + 1) y)#0} 

Similarly we have 

{ T n + l(,o(y, z) = s} (3 { T n + Ico( - y, z) = 0} 

= { T"~o(y ,  z -  y ) =  s} ca { T"oJ(-  y, z + y ) =  0} 

= { T"oJ(y ,  z -  y )  = s }  n { co( - y ,  z + (n + 1 ) y )  = 0} 

These prove the lemma. I 

Proof of Theorem 5. Let s # 0. From Lemma 2, 

py, z(S'~ Tn+ lJ, l)=1~{ T"+loJ(y, z ) = s }  

=g({ T"o)(-  y, z + y ) = a y ' S }  c~ { o)(y, z - ( n  + 1) y) #0} ) 

+lt({Tno)(y,z-- y)=s} c~ {co(- y , z + ( n +  1)y) =0}) 

By the definition of ~cot, we can see easily that the state T"o ) ( -  y, z + y) 
on the momentum-lattice site ( - y , z  + y) at time n is determined by 
the states {co(y, z')} on the momentum-lattice sites { (y', z'); y' e Y, 
z ' ~ [ z - ( n - 1 ) y ,  z + ( n + l ) y ] }  at time 0. Here [a,b] denotes the set 
of such integers z that a.N<z~<b (or b~<z~<a). Hence the events 
{ T"e)( - y, z + y) = a y  's} and { co(y, z - ( n  + 1 ) y) # 0} are mutually inde- 
pendent with respect to the probability/z ~ J [ .  Therefore we have 

.u({ T%o(- y, z + y )=ay 'S}  c~ {co(y, z - ( n  + 1) y) # 0 } )  

=lt{T"co(- y , z+  y)=ay~S} . lZ{co(y,z-(n+ 1)y)  # 0 } )  

=p_y,=+ y(ayls; T"/z)(1-py,  z_r y(O;lt)) 

Similarly we have 

IX({ T"oo(y, z -  y) = s} n { e)( - y, z + (n + 1 ) y) = 0} ) 

=py,~_y(S; T"lz) p_y. ~+(,,+ 17y(0;/z) 

Hence we have for s # 0 

py, z(S; T"+ 'l~) =p_y,~+r ,) y(O; lz) py.~_ y(S; T"lz) 

+ ( 1 - p y ,  z_(.+~) y(O;lz)) p_y.~+ y(a~-ls; T"lz) 
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Similarly from the first part of Lemma 2, we get 

py. ~(0; T ~+ 'I t )=py.~_y(O; Tni t )= py. ~_(.+ ,)y(O; It) (25) 

Now, by the definition of d? = c~ c~ we have for s ~-0, 

~b(s, y, {py,.~+~(.; T~it)}) 

= p _  y.~ + y(O; Tnit) py.~_ y(S; T~it) 

+(1-py .~_y(O;  T~it)) p _  y. z + y(ay~ S; T~it) 

which is equal to, from above equalities (25), 

= p__; y.z  + tn+ l) y(O; i t )  py ,  z _  y(S', T"it) 
1 

+(1--py.z_(~+~)y(O;it))  p_y.~+ y ( a y l s ;  T"it) 

Therefore we get 

py.~(s; T"+ t / t )= ~b(s, y, {py, ~+.(.; T~/z)}) 

This proves the theorem for the case s r 0. 
Now let s = 0. By the definition of q~ = ~cot, 

~(o, y, {py,~+,(.; 1"-,)})=p~.~_~(o; 7"-~) 

which is, from (25), equal to 

=pe.~(O; T"+llz) 

This proves the theorem for s = 0. II 

Important Remark: We showed in ref. [9]  that for CA defined by 
the transition function ~o t  with trivial try - identity [ try(S) = s for  Vs ~ S],  
the Boltzmann type entropy H(it) actually increases strictly for "general" 
It e J[ :  

H( T" + ~It ) > H( T~It ) for Vn >~ O. 

Since h(Tnit) is invariant, H ( T " ~ ) - h ( T n i t )  increases monotonically 
for It e ~ ' .  Roughly speaking it represents the amount of mutual correlation 
between the {co(y, z)} on different sites z ~ Z a. Note that the initial macro- 

N 

state It ~ J / h a s  no such correlation. The time evolution Tnit of It generates 
the correlations. 
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